2 terrific technologies

ClassPad (CAS) and Graphe Easy (software)

Presenter: Geoff Phillips

□ □ </th <th>Graphe Easy 2.26 - [Integrat</th> <th>ion - Left Boxes.gef]</th>	Graphe Easy 2.26 - [Integrat	ion - Left Boxes.gef]
0 # 0 0 2 2 10 + 0 + 0 + 0 + 0 ± 1 0 0 + 2 0 0 + 2 0 + 0 + 0 + 0 ± 1 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	🔄 file falt Yew Qocument	hade from loop August 1
Image: Section of the sectio	DGBGQES	b· 월· ◇· ○· 항기 집월 ▶ 너 두 약 * 영상 · = 뉴는 ㅋㅋ 1 1 수요
Image: Second	N 120 124	± τ # ·Δ· × · · · · · · · · · · · · · · · · ·
Marendari X + + + + + + + + + + + + + + + + + + +	1	I Integration - Left Boses per
Image if it is a set of the set	Mathematic () 🗙 🕈 4 🐑 +	
Image:	• integral (90 18-
Image: Second	🔹 🚺 Integral 🚺	Blue boxes area = 14
akolatar akolat	• <u>- 100 - 100</u>	90 16 Yellow area = 21.333
		15-
Alculator Alculator		14
Medidaw Internetic right das its regist Internetic right das i		13-
skolator sko		11
alculator alculator		10
		9
		8
	Calculator	7
	Remember right click for help!	6
		3
		2
		1
44		
**************************************	leady	* - 0.35503 y - 20 0020 0000

Session outline:

Part 1

ClassPad's ease/speed of use - a tour of some highlights

Basic operation	Modes (std/dec, rad/deg, recalc line/all)
Drag and drop (within and be	tween apps), live updating
Keyboards	2D etc. simult. eqns, derivatives etc.
CAS alegebra	solve, factorise, expand, differentiate, sim eqns etc.
Wizards	e.g. Normal curve calcs.
Graphing	$p(x) = x^3 + 5x^2 - 8x - 12$, locating key features, tangents and
	integrals, dynamic graph, panning.
Sequences	Defining explicit/implicit, tables, sum, graphs
Solver	Solve for any variable in an equation (no need to $put = 0$).
Main – Geom	dragging from Main to Geometry app & vice verse.
Geometry unleashed	incentre, theorems made fun, tangent animations, tables
Spreadsheet application	copying data from Geometry area investigation
Statistics	lists, stats calcs, regression calcs and plots.
eActivity	family of functions, dragging to Main for analysis.
Questions	How do I?

Part 2

Graphe Easy – teaching aid and desktop publishing application

Basic graphing	y = xx
Built in features	Plot types, Parameters, Integration, Data, DEs etc.
Teaching aid files	Left boxes example, Gradient of secant.
Representing data	Scatter, column and box plots.
Keyboard shortcuts	Customising GE for use in desktop publishing.
Desktop publishing	Formatting for tests and worksheets.

Modes / keyboards

<u> </u>					<u>е н</u> ,	·• :	
₽ <mark>5</mark> ≟ (ללא (Jd×	7¢‰∕	• ≁	H۰	•		≽
J(15	0)						۸
		1	2.2	474	448	71	Π
sin(π	/12)						
		0.	258	819	904	51	
Ш							
							Ш
							¥
[mth]	abc	cat	2D	۱Þ	96	Ð	Ŧ
πθ	i 🛛	0,	⇒, a	<u>ر</u> اء	Z	t	٠
log	ln	1	[7]	8	9	M	=
	î —				-		
χa	e^{x}	χ ⁻¹	4	5	6	×	÷
χ² (e^{\times}	χ-1 χ	4 1	5 2	6 3	× +	÷
x² ([<i>e</i> × →	χ-1 χ (-)	4 1 0	5 2	6 3 E	× + ar	ы́ - ÷
ײ ([TRIG	e×)] CAL	x-1 x (-) .C OP	4 1 0 TN	5 2 •	6 3 E AR	× + E	Эй – ÷

_

Drag and drop

💙 Edit Action	Interactive 🔀	
╚╬╡╔┙╸╠╝╦	श ▼///▼ 	ŗ
Define f(x)=x	^2 . 🗗	
f(2)	done	
4/03	4	
1(3)	9	
f(3.1)	9 61	
f(3.1)-f(3)	5.01	
0.1	6.1	
f(3.01)-f(3)		
0.01	6.01	
D	0.01	
	L	
L Alg Decimal	Real Deg 💷	

Change top line (De	efine)
V Edit Action	Interactive 🔀
▝▙▋▞▖▖▓▓৵	▼ ∕¦∕ ▼
Define f(x)=x^	3 .
f(2)	done
1127	8
f(3)	
f(3.1)	27
	29.791
f(3.1)-f(3)	
0.1	27.91
f(3.01)-f(3)	
0.01	07.0001
	27.0901
[
Alg Decimal	Real Deg 💷 🔳

Change one line	only (line 3)
-----------------	---------------

💙 Edit Action	Interactive	X
₽ <u>₽</u> ₽ <u>₽</u> ₽₩₽₩₽₩₽₩₽₩₽₽₩₽₽	v ▼ / // ▼	»
Define f(x)=x'	,3	
6(2)	done	
F(2)	8	
f(4)	<i>(</i> 1	
f(3.1)	64	
40.45.405	29.791	
0.1		
	27.91	
$\frac{f(3.01)-f(3)}{0.01}$		
0.01	27.0901	
		Ļ
Alg Decimal	Real Deg 💷	

Simultaneous equations – 4 methods

"Command line" syntax

V	Edit Action Interactive 🔀
먹	Ŋ►∭╬⋧⋥ ৠ℁⋈ <mark>▼</mark> ┲╋╈
Solve	e((x+y=10,x-y=2),(x,)▲
	{x=6,y=4}
Ala	Standard Real Rad full

Edit	Action	Inte	ractiv	/e 🔀
╚╪┋╬┝┣╎	d×⊒↓4%⊘	▼ /†	┦┓	
Solve(C)	(+y=10,	<u>х-</u> у=	2),(×:≜
г.	1 10	{	≈6,y=	43
rref(1	-1 2	>		
		́ г	10	67
		L	01	4]
Þ				Ľ
(mth) abo	(cat)	20.0	$\mathbf{\Sigma}$	+ 1 -
(mth) abo	cat)	2D)		
mth abo πθi∞	cat) (),	2D (<u>×:</u> /y/z	t +
(mth abo πθi∞ [∎□] [) Cat) (()) 【日日	2D > x 7	<u>×</u> 1 8 9	▶ ← ^ =
mth abo πθi∞ [■□] [≣ lim□ ਵ,	; cat) ((),) [88]	2D > x 7 4	× × 89 56	t + (^ = (> ÷
mth abo πθi∞ [■□] [= lim□ Σ̄c		2D > * 7 4 1	× 89 56 23	t + ^ = × ÷ + -
		2D * x 7 4 1 0	<mark>У/</mark> 89 56 23 • Е	t + (^ = (> ÷ + - ans

2D Keyboard

2D Keybo	ard.			
🎔 Edit	Action I	ntera	ictiv	/e 🔀
"≩i(b►)	^{(d} ×7][<u>(</u> 4%∕/▼	′ <i>7</i> ₩	•	>
[=v+v=1	ial i			
	;			П
l	· x , y	s~-c		лII
6		12-0	, y-	^{ر ب}
[⁻				
				Щ
	<u> </u>		20	
mth abo	cat 2		00	
mth abo πθiα	; cat 2	<u>c</u> 2 2		↓ ↓ ↓ ↓
mth abo πθi«	; cat) 2 (), ;	D 2 7 8	<u> </u> 9	↓ ▼ ● ₹ ● ₹
mth abo πθiα	; cat) 2	D 2 7 8 4 5	< / 2 9 6	▼ ▼ ● ₹ = ^ = ×
mth abo πθi∞) <u>cat</u>) 2) () , 1 ■ _/□ ■ _/□	D 2 7 8 4 5 1 2	1 2 9 6 3	▼ ▼ 1 2 ● 2 0 = 2 0 = 0 0 = 0 0 0 0 0 0 0 0 0 0 0
mth abo πθιο = √ χ" ε' ■ ()	Cat 2	D 2 7 8 4 5 1 2 0.	1 9 6 3 E	▼ ▼ 1 2 4 2 4 - - - - - - - - - - - - -
mth abo πθi≪ Ξ √ χ ε' III () CALC	Cat 2 C), 1 1 1 1 1 1 1 1 1 1 1 1 1	D 2 7 8 4 5 1 2 0 . Vf	1 9 6 3 8	

CAS algebra

Wizards

Interactive/Distribution/nornCDf

Graph icon, then Y=.

Analysis/Sketch/Tangent.

Toolbar icon or Analysis/G-Solve/

Tabulate icon.

Analysis/G–Solve/ $\int dx$ /Key lower

Arrow key for next root.

Points plot icon.

(Re–graph/click gr icon to clear dots) ▼ Edit Zoom Analysis ◆ 🗵

Include *a* and *b* in equation.

Main → Geometry

From Main, enter expression Drag to Geometry window Draw/Construct/Tangent to Curve

Create animation (Edit/Animate/Add) Edit/Animate/Go Once Tabulate point co-ords and slope

Drag table back to Geom window

Solver / Financial app's TVM solver

▼ Edit Solve ◆ Solve ↑	Menu→NumSolve	
Solve → BUE > <	💙 Edit Solve 🔶	X
Equation: $V=\pi, r^2 \cdot h$ OV= 490.87 @r= 2.492523802056 Oh= 25.15 Lower= $-9\epsilon+999$ Upper= $9\epsilon+999$ $mth abc cat 2D \checkmark 2 \cdot 2 \cdot 21 2 3 4 5 6 7 8 9 0 \bullet[q w e r t y u i o p -]$a s d f g h j k 1 ; 1\Rightarrow a s d f g h j k 1 ; 1\Rightarrow a s d f g h j k 2 ; 1@\beta r MATH SPACE SMBL EXE Rad Real 1 \epsilon-10 cm$	Solve 747 *** 🗸	
V=π.r ² .h OV= 490.87 @r= 2.492523802056 Oh= 25.15 Lower= -9ε+999 Upper= 9ε+999 (mth abc cat 2D × 2 + 1 1 2 3 4 5 6 7 8 9 0 + 1 % a s d f g h j k 1 ; \ \$ a s d f g h j k 1 ; \ \$ z z c V b n m , . / (m) @ @r MATH SPACE SMBL EXE Rad Real 1ε-10 (m)	Equation:	
OV= 490.87 @r= 2.492523802056 Oh= 25.15 Lower= -9ε+999 Upper= 9ε+999 mth abc cat 2D × 2 · 1 2 3 4 5 6 7 8 9 0 •	V=π•r ² •h	
	OV= 490.87	
On= 25.15 Lower= -9ε+999 Upper= 9ε+999 [mth] abc (abc) (abc) <tr< td=""><td>@r= 2.492523802056</td><td></td></tr<>	@r= 2.492523802056	
Upper= 9€+999 (mth) abc (cat) 2D × 2 1 2 3 4 5 6 7 8 9 0 ← (mu e r t y u i o p - % a s d f g h j k 1 ; \ ↑ z x c v b n m , . / (mAR MATH SPACE SMBL EXE Rad Real 1€-10	Un= 25.15	
mth abc cat 2D メ → 1 2 3 4 5 6 7 8 9 ● 1 2 3 4 5 6 7 8 9 ● 1 2 3 4 5 6 7 8 9 ● 1 2 3 4 5 6 7 8 9 ● % a s d f y u i o p ■ % a s d f g h j k 1 ; \ % a s d f g h j k 1 ; \ \ m h i<	Upper= 96+999	
mth abc cat 2D ★ ★ 1 2 3 4 5 6 7 8 9 0 ★ 9 w e r t y u i o p - % a s d f g h j k 1; \ ★ z z c v b n m , . / ∞ Br MATH SPACE SMBL EXE Rad Real 1ε-10		
1 2 3 4 5 6 7 8 9 0 € § q w e r t y u i 0 P § q w e r t y u i 0 P § q w e r t y u i 0 P § q w e r t y u i 0 P § q w e r t y u i 0 P § q w e r t y u i 0 § q w e r t y u i 0 § q w e r t y u i i i § q w t t u u u u i i i [x z v v u u u u u u u [x z v<		1
1 2 3 4 5 6 7 8 9 0 9 w e r t y u i ο P - 5 a s d f g h j k 1 ; \ ↑ z z c v b n m , . / αβγ MATH SPACE SMBLEXE Rad Real 1ε-10 (00)		Ě
¶qwertyuiop- Sasdfghjkl;∖ ↑zzcvbnm,./ αβγMATH SPACE SMBLEXE Rad Real 1ε-10 (000)	1234567890 🕈	•
Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Rad Real 1ε-10	🖁 q w e r t y u i o p -	
z z c v b n m , . / αβγ MATH SPACE SMBL EXE Rad Real 1ε-10 cm	Nasdfghjkl;	N
αβγ MATH SPACE SMBL EXE Rad Real 1ε-10 Cmm		
αβγ MATH SPACE SMBL EXE Rad Real 1ε-10 🛛 🕬		
Rad Real 1E-10 🛛 🕬	αβγ MATH SPACE SMBL E	XE
	Rad Real 1E-10 🗧 🚛]

🛛 Edit Solve 🔶 🛛 🕅
Solve +++ =================================
Equation:
$V=P \cdot \left(1 - \frac{r}{100}\right)^{t}$
OV= 2000
OP= 6000
@r= 24.01643143484
Lower JE+ 333
[mth]abc[cat]2D]
1234567890 🗲
🜆 q w e r t y u i o p - 🎆
%• a s d f g h j k l ; ∖
🕇 z z c v b n m , . /
αβγ MATH SPACE SMBL EXE
Rad Real 1g-10 🛛 🕬

Menu→Fin	ancial	
💙 Edit	Calculations	X
< ▷	ೱݠᅆᅖ▾	≫
Compo	und Interest	
N	52.4225018	
I%	9.4	
PV	15000	
PMT	-350	
F۷	0	
P/Y	12	
С/У	12	
Help	Format	
Solve	End 🦸	

Sequences

Swimming pool problem	
💙 Edit Graph 🔶	X
之中 夏豐開閉	±-/× Σan ≥
Recursive Explicit	
⊠an+1=0.98•an+500	
a1=50000	
b1=0	
Cn+1: 0	
a _{n+1} =0.98•a _n +500	A
г <u> </u>	
2 49500	
4 48529	Ш
L 5 48059	,™
48059 204	-14
Kad Keal	ξUU

Geometry unleashed

Tap point, then touch again and drag File Edit View Draw A = 3.75 c = 6.94 b = 5.05 A = 9.22 A = 0.22 A = 0.22A

Spreadsheet application

Generating quadratics 🛛 File Edit Graph Action 🗮 ╚╪┊╒╟┉┥══╼╠╼╢╓╖╼┝] A | B | C | D ٠ 5 7 (... x^2-12•x+35 2 7 (... x^2-9•x+10 1 9 (... x^2-10•x+5 9 6 (... x^2-15•x+5 10 4 (... x^2-14•x+40 2 3 4 5 ٩Ē =rand(1,10) **X**X 🖾 Al Value: 🖾 Al Formula: rand(1,10) A1 5 ίШ

V F	ïle	Edit Graph Ac	tion 🗵
미 <u>.5</u> 글	вþ		Лн⊣►
	C	D	E 🔺
1	(x^2-12•x+35	
2	(x^2-9•x+14	
3	(Z	x^2-10•x+9	
	۰ ۲	$\chi^{-13}\chi^{+34}$	├───┤₩
	`···	2 11-2-40	
-exp.			
RD1	Valu	le:	
x ² −1	2• x	+35	
E D1	For	mula:	
expar	nd(C	:1)	
		•	
D1 x^	2-1	2•x+35	ŝ

💙 Fil	le Edit	Graph Ac	tion 🕴	X
민适는 B			մո⊦▼	Þ
	c	D	E	۵
1	(x^2·	-12•x+35		
2	(x^;	$2 - 9 \cdot x + 14$		
3	(<u>x</u> ^,	2-10• x+9		
<u> </u>	- x 2	-14+40		W
<u> </u>	<u> </u>	14-2-40		▼
				Ч
=(<u>x</u> -H	1).(2-	BI)	✓	즥
BC1 A	alue:			
(x-5)•	(x-7)			
Beer F	·			
	ormula	15 1		
(2 - H 1 ,)•(Z-BI			
	EX. / M	7\		
jui (x-	-2) · (X-	- ()	ς	

Combining applications (e.g. Geometry and Spreadsheet apps)

Calc, Two-variable (list1,list2).

Calc, Distribution.

Select NormalCD in bottom box. × v ≽ Туре Distribution -Normal CD • □Help Next >>

<u>.</u>

Statistics

SetGraph, tick StatGraph2 only. Tap graph icon.

Calc, LinReg (list1, list2).

SetGraph, tick StatGraph3 only. Tap graph icon.

v 7	Zoom	An	alysis (alc 🔶	×
	្រុ	2	的反		5Þ
	list1		list2	list3	
1 2 3 4 5		12345	2 4 6 9 11		1 2 3 4 5
Cal⊧		-			
	_	_			►
C .	5]=[1	1			
. L		-	€		-
 		_	Þ .		
	tGrapt	13	\$		

eAcitivities (i.e. Save-able files)

GPeActs/quad invn broch 1 ▼ Edit Type GMem ◆ 区 → □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
Brochure quad inv'n 1
Sheet1 <u>Sheet2</u> Sheet3]] ↓ ⊠y1= _x 2 _{+1•x+1} []▲

What's the pattern?	
🖤 Edit Zoom Analysis 🔶	×
A HARE A HAR	Þ
-10	5
-5	
	_
	ŧ
Sheet1 (Sheet2) Sheet3 ((4	4 7 1
Sheet1 (Sheet2 (Sheet3)) ◀ ⊠y1= _x 2+1.x+1 ()	
Sheet1 Sheet2 Sheet3 () ◀ Sheet1 Sheet2 Sheet3 () ◀ Sy1=x ² +1.x+1 () Sy2=2.x ² +7.x+10 ()	
Sheet1[Sheet2]Sheet3]]↓ Sheet1[Sheet2]Sheet3]]↓ Sy1= _x 2+ ₁ . _{x+1} [] Sy2= ₂ . _x 2+ ₇ . _{x+10} [] Sy3= ₃ . _x 2+ ₁₃ . _{x+19} []	
Sheet1 Sheet2 Sheet3 4	
Sheet1 Sheet2 Sheet3 4 $g_{y1=\chi^2+1\cdot\chi+1}$ () $g_{y2=2\cdot\chi^2+7\cdot\chi+10}$ () $g_{y3=3\cdot\chi^2+13\cdot\chi+19}$ () $g_{y4=4\cdot\chi^2+19\cdot\chi+28}$ () $g_{y5:0}$ $g_{y6:0}$	

GPeActs/Triangle solve	<u>r</u>
牧 File Edit Insert	: Action 🔣
≝ ∰∰ (ð ►) B 🗛∕	′ /// ▼
sine rule	? Solve
cosine rule	? Solve
SOH	? Solve
САН	? Solve
тоя	? Solve

Alg Decimal Real Deg 💷 🔳

Questions - "How do I ...?"

→sine rule ▼ Edit Solve ♦	×
Solve +++ ***	≥
sine rule ? Solv	e
la sia su la l O cu	
	<u> </u>
SOH SOIN	el 🖩 🛛
	1
Equation:	F
$\frac{a}{\sin(A)} = \frac{b}{\sin(B)}$	
@a= 10	
OA= 33.7489885958885	
Ob= 18	
OB= 90	
Lower= -9£+999	느
<u> </u>	
Deg Keal IE-13 🗧 🛍	шЦ

why do mey all touch at	one point?
💙 Edit Zoom Analy	isis 🔶 🗙
i e e e e e e e e e e e e e e e e e e e	¥00 BERIÞ
-10	5
/ -5 \	
L Sheet1 Sheet2 She	et3∬∢ ≯
<u> </u>	et3]]4]) []]4
L Sheet1 <u>Sheet2 She</u> By1= _x 2 _{+1•x+1} By2=2•x ² +7•x+10	eet3]]]] []] []]
 Sheet1 <u>Sheet2</u> She Øy1= _x 2+1·x+1 Øy2=2·x ² +7·x+10 Øy3=2·x ² +10.x+10	et3]]]] []] []]
L Sheet1 (Sheet2) She	eet3]]4) [] [] []
L Sheet1 Sheet2 She	eet3 4 4 [] 4 [] 4 [] []
$\frac{1}{5heet1 (Sheet2 $	eet3 4 • [] • [] [] []

→SOH			
💙 Edit Solve 🔶			x
Solve / / ™ [™] ×			≽
sine rule	?	Solve	
cosine rule	?	Solve	
зон	?	Solve	
 ··			▼
Equation			
sin(θ)= <mark>Opposite</mark> Hypoten			
® <i>θ=</i> 3 3			
OOpposite= 86.602	2540	937	
OHypoten= 100			
Lower= -9e+999 Upper= 9e+999			
Deg Real 15-13		ζIII	

Part 2 Graphe Easy – teaching aid and desktop publishing application

Basic graphing $y(x) = x^2$

Graphe Easy 2,26 - Document1	P X
Ele Edit View Document Image Zoom Tools Window 2	
▋D ☞ ■ ● Q [∠ ● + ■ + ▷ < ལ < ♀ J □ ■ ₩ ↓ Ⅲ ペ ■ ペ ♥ ↓ ℝ ↓ ⊕ ★ ★ ↓ ↓ ♦ ♥ → →	
Mathematic () X + + - Document 1	
f_{v}	
6	
· · · · · · · · · · · · · · · · · · ·	
10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 1	
-2	
-3	
-4+	
Calculator (Remember right-click for help) -7	
Ready 💭 x = 0.26787 y = -7.9121 0316	0362

🗹 Graphe Easy 2.26 - [Document1]		_ 2 🔀
Eile Edit View Document Image Zoo	um <u>T</u> ools <u>W</u> indow <u>2</u>	_ 🖻 ×
D 🛱 🖬 🖨 🖪 🔛 📭 🖷 🖬	・ 「 「 「 」 」 「 」 =) ** ↓ 「 m (2 2 (+ , = + + + × 1)	$\oplus \mathbb{C}$
🖹 🕹 🛍 🐂 🐂 🐂 🕇 🖌		
	A Mathematical object properties	
Mathematic 🖸 🗙 🕈 🗲 🐑 + -	Function *	
	Name : y Expression : xx	
	Appearance 🎓	
	Op Size 0 % 0p Size 0.5 % 1 1.5 2 2 2.5 3 4	7 8 9 X
Calculator (Remember right-click for help)	4.5	
>		
	< Back Finish Cancel Help -6 -7	
Ready		0370 0011

Built in features <u>Parameters</u>! Set up *a*, *b* and *n*.

Teaching aid file 1 Document→New Math Object→Integrals etc. Formatting. Text Calc (* *) box & Commands.

Teaching aid file 2 Introduction to limits, differential calculus

Teaching aid file 3 Differential equations and Euler's method (screen 1)

Teaching aid file 3 Differential equations and Euler's method (screen 2)

Representing data

Keyboard shortcuts

$Tools \rightarrow Customise \rightarrow Keyboard$

Customize		X
Commands Toolbars Tools Category: Zoom Image: Commands: Commands: Image: Commands: Image: Commands: Move dynamically Image: Commands: Image: Commands: Move dynamically Image: Commands: Image: Commands: Move dynamically Image: Commands: Image: Commands: Stretch out the x-axis Image: Commands: Image: Commands: Description: Image: Commands: Image: Commands: Stretch horizontally Image: Commands: Image: Commands:	Keyboard Menu Options Set Accelerator for: Default Current Keys: Alt+Up Press New Shortcut Key:	Assign Remove Reset All
2		Close

Customize		
Commands Toolbars Tools Category: Image Commands: Fast forward ImageCopyAsABitmap ImageCopyAsACustorr ImageCopyAsACustorr ImageCopyAsAMetafik ImageCopyAsAMetafik ImageCopyAsAMetafik ImageCopyAsAMetafik ImageCopyAsAMetafik ImageCopyAsAMetafik	Keyboard Menu Options Set Accelerator for: Default Current Keys: Alt+C Press New Shortcut Key:	Assign Remove Reset All
2		Close

Formatting for tests and worksheets

Information and further resources

Site

Weblink/address

http://www.freewebs.com/geoffphillips http://www.freewebs.com/geoffphillips/classpad.htm http://www.freewebs.com/geoffphillips/viewclasspadpdfs.htm Easy http://www.freewebs.com/geoffphillips/grapheeasy.htm http://www.casioed.net.au/products/classpad_product.php http://www.grapheeasy.com gphillips@bigpond.com casio.edusupport@shriro.com.au http://agutie.homestead.com/files/index.html

Geoff Phillips – ClassPad Geoff's ClassPad pdfs

Geoff Phillips site

Geoff Phillips – Graphe Easy

CasioEd ClassPad support

Graphe Easy Homepage

Geoff's email address

ClassPad support

Geometry theorems

Appendix ClassPad Geometry and calculus – The gradient function eActivity

eActivity/More theorems/Circle tangents

Geometry→GP_Geom/BoxVol2

GPeActs→Integral anim

Geometry→GP_Geom→GradChor File Edit View Draw

GPeActs→River and fence 2 (Geom) ▼ File Edit View Draw

→Van Aubel's theorem

File Edit View Draw

Van Rubel's theorem

Van Rubel's theorem

Total Content of the orem

Total Content of

GPeActs→Grad-tangt●

